Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1507.3994

 Article overview



Limits on thermal variations in a dozen quiescent neutron stars over a decade
Arash Bahramian ; Craig O. Heinke ; Nathalie Degenaar ; Laura Chomiuk ; Rudy Wijnands ; Jay Strader ; Wynn C. G. Ho ; David Pooley ;
Date 14 Jul 2015
AbstractIn quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars, the origin of the thermal X-ray component may be either release of heat from the core of the neutron star, or continuing low-level accretion. In general, heat from the core should be stable on timescales $<10^4$ years, while continuing accretion may produce variations on a range of timescales. While some quiescent neutron stars (e.g. Cen X-4, Aql X-1) have shown variations in their thermal components on a range of timescales, several others, particularly those in globular clusters with no detectable nonthermal hard X-rays (fit with a powerlaw), have shown no measurable variations. Here, we constrain the spectral variations of 12 low mass X-ray binaries in 3 globular clusters over $sim10$ years. We find no evidence of variations in 10 cases, with limits on temperature variations below 11% for the 7 qLMXBs without powerlaw components, and limits on variations below 20% for 3 other qLMXBs that do show non-thermal emission. However, in 2 qLMXBs showing powerlaw components in their spectra (NGC 6440 CX 1 & Terzan 5 CX 12) we find marginal evidence for a 10% decline in temperature, suggesting the presence of continuing low-level accretion. This work adds to the evidence that the thermal X-ray component in quiescent neutron stars without powerlaw components can be explained by heat deposited in the core during outbursts. Finally, we also investigate the correlation between hydrogen column density (N$_H$) and optical extinction (A$_V$) using our sample and current models of interstellar X-ray absorption, finding $N_H ({ m cm}^{-2}) = (2.81pm0.13) imes10^{21} A_V$.
Source arXiv, 1507.3994
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica