Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 1507.5642

 Article overview



The disk-outflow system in the S255IR area of high mass star formation
I. Zinchenko ; S.-Y. Liu ; Y.-N. Su ; S. V. Salii ; A. M. Sobolev ; P. Zemlyanukha ; H. Beuther ; D. K. Ojha ; M. R. Samal ; Y. Wang ;
Date 20 Jul 2015
AbstractWe report the results of our observations of the S255IR area with the SMA at 1.3 mm in the very extended configuration and at 0.8 mm in the compact configuration as well as with the IRAM-30m at 0.8 mm. The best achieved angular resolution is about 0.4 arcsec. The dust continuum emission and several tens of molecular spectral lines are observed. The majority of the lines is detected only towards the S255IR-SMA1 clump, which represents a rotating structure (probably disk) around the young massive star. The achieved angular resolution is still insufficient for conclusions about Keplerian or non-Keplerian character of the rotation. The temperature of the molecular gas reaches 130-180 K. The size of the clump is about 500 AU. The clump is strongly fragmented as follows from the low beam filling factor. The mass of the hot gas is significantly lower than the mass of the central star. A strong DCN emission near the center of the hot core most probably indicates a presence of a relatively cold ($lesssim 80$ K) and rather massive clump there. High velocity emission is observed in the CO line as well as in lines of high density tracers HCN, HCO+, CS and other molecules. The outflow morphology obtained from combination of the SMA and IRAM-30m data is significantly different from that derived from the SMA data alone. The CO emission detected with the SMA traces only one boundary of the outflow. The outflow is most probably driven by jet bow shocks created by episodic ejections from the center. We detected a dense high velocity clump associated apparently with one of the bow shocks. The outflow strongly affects the chemical composition of the surrounding medium.
Source arXiv, 1507.5642
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica