Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1508.5336

 Article overview



Parameter estimation on gravitational waves from neutron-star binaries with spinning components
Ben Farr ; Christopher P. L. Berry ; Will M. Farr ; Carl-Johan Haster ; Hannah Middleton ; Kipp Cannon ; Philip B. Graff ; Chad Hanna ; Ilya Mandel ; Chris Pankow ; Larry R. Price ; Trevor Sidery ; Leo P. Singer ; Alex L. Urban ; Alberto Vecchio ; John Veitch ; Salvatore Vitale ;
Date 21 Aug 2015
AbstractInspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. Advanced LIGO will begin operation in 2015 and we investigate how well we could hope to measure properties of these binaries should a detection be made in the first observing period. We study an astrophysically motivated population of sources (binary components with masses $1.2~mathrm{M}_odot$-$1.6~mathrm{M}_odot$ and spins of less than $0.05$) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential binary neutron-star sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of $sim 16\%$, with little constraint on spins (the median $90\%$ upper limit on the spin of the more massive component is $sim 0.7$). Stronger prior constraints on neutron-star spins can further constrain mass estimates, but only marginally. However, we find that the sky position and luminosity distance for these sources are not influenced by the inclusion of spin; therefore, less computationally expensive results calculated neglecting spin could be used with impunity for electromagnetic follow-up.
Source arXiv, 1508.5336
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica