Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 1509.2172

 Article overview



The Evolution of Inner Disk Gas in Transition Disks
Keri Hoadley ; Kevin France ; Richard D Alexander ; Matthew McJunkin ; Christian Schneider ;
Date 7 Sep 2015
AbstractInvestigating the molecular gas in the inner regions of protoplanetary disks provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H$_2$) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed HI-Lyman $alpha$-pumped H$_2$ disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H$_{2}$ emission in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H$_2$ FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r$_{in}$ and r$_{out}$), describing where the bulk of the observed H$_2$ emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n$_{13-31}$, r$_{in,CO}$, and the mass accretion rate. We find strong, positive correlations between the H$_2$ radial distributions and the slope of the dust SED, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving protoplanetary disks. Overall, we find that H$_2$ inner radii are $sim$4 times larger in transition systems, while the bulk of the H$_2$ emission originates inside the dust gap radius for all transitional sources.
Source arXiv, 1509.2172
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica