Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » hep-th/0312021

 Article overview



Non-perturbative RR Potentials in the c=1 Matrix Model
David J. Gross ; Johannes Walcher ;
Date 1 Dec 2003
Journal JHEP 0406 (2004) 043
Subject hep-th
AbstractWe use the hat c=1 matrix model to compute the potential energy V(C) for (the zero mode of) the RR scalar in two-dimensional type 0B string theory. The potential is induced by turning on a background RR flux, which in the matrix model corresponds to unequal Fermi levels for the two types of fermions. Perturbatively, this leads to a linear runaway potential, but non-perturbative effects stabilize the potential, and we find the exact expression V(C)=frac{1}{2pi}int daarccos [cos(C)/sqrt{1+e^{-2pi a}}]. We also compute the finite-temperature partition function of the 0B theory in the presence of flux. The perturbative expansion is T-dual to the analogous result in type 0A theory, but non-perturbative effects (which depend on C) do not respect naive R o 1/R duality. The model can also be used to study scattering amplitudes in background RR fluxes.
Source arXiv, hep-th/0312021
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica