Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » cond-mat/9607144

 Article overview



Comparing conductance quantization in quantum wires and Quantum Hall systems
Anton Yu. Alekseev ; Vadim V. Cheianov ; Jürg Fröhlich ;
Date 21 Jul 1996
Subject cond-mat hep-th
AbstractWe propose a new calculation of the DC conductance of a 1-dimensional electron system described by the Luttinger model. Our approach is based on the ideas of Landauer and Büttiker and on the methods of current algebra. We analyse in detail the way in which the system can be coupled to external reservoirs. This determines whether the conductance is renormalized or not. We show that although a quantum wire and a Fractional Quantum Hall system are described by the same effective theory, their coupling to external reservoirs is different. As a consequence, the conductance in the wire is quantized in integer units of $e^2/h$ per spin orientation whereas the Hall conductance allows for fractional quantization.
Source arXiv, cond-mat/9607144
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica