Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1604.8204

 Article overview



The 999th Swift Gamma-Ray Burst: some like it thermal
F. Nappo ; A. Pescalli ; G. Oganesyan ; G. Ghirlanda ; M. Giroletti ; A. Melandri ; S. Campana ; G. Ghisellini ; O.S. Salafia ; P. D'Avanzo ; M.G. Bernardini ; S. Covino ; E. Carretti ; A. Celotti ; V. D'Elia ; L. Nava ; E. Palazzi ; S. Poppi ; I. Prandoni ; S. Righini ; A. Rossi ; R. Salvaterra ; G. Tagliaferri ; V. Testa ; T. Venturi ; S.D. Vergani ;
Date 27 Apr 2016
AbstractWe present a multiwavelength study of GRB 151027A. This is the 999th GRB detected by the Swift satellite and it has a densely sampled emission in the X-ray and optical band and has been observed and detected in the radio up to 140 days after the prompt. The multiwavelength light curve from 500 s to 140 days can be modelled through a standard forward shock afterglow but requires an additional component to reproduce the early X-ray and optical emission. We present TNG and LBT optical observations performed 19.6, 33.9 and 92.3 days after the trigger which show a bump with respect to a standard afterglow flux decay and are possibly interpreted as due to the underlying SN and host galaxy (of 0.4 uJy in the R band). Radio observations, performed with SRT, Medicina, EVN and VLBA between day 4 and 140, suggest that the burst exploded in an environment characterised by a density profile scaling with the distance from the source (wind profile). A remarkable feature of the prompt emission is the presence of a bright flare 100 s after the trigger, lasting 70 seconds in the soft X-ray band, which was simultaneously detected from the optical band up to the MeV energy range. By combining Swift-BAT/XRT and Fermi-GBM data, the broadband (0.3-1000 keV) time resolved spectral analysis of the flare reveals the coexistence of a non-thermal (power law) and thermal blackbody components. The BB component contributes up to 35% of the luminosity in the 0.3-1000 keV band. The gamma-ray emission observed in Swift-BAT and Fermi-GBM anticipates and lasts less than the soft X-ray emission as observed by Swift-XRT, arguing against a Comptonization origin. The BB component could either be produced by an outflow becoming transparent or by the collision of a fast shell with a slow, heavy and optically thick fireball ejected during the quiescent time interval between the initial and later flares of the burst.
Source arXiv, 1604.8204
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica