Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » quant-ph/0301155

 Article overview



Is the concept of quantum probability consistent with Lorentz covariance?
Y. S. Kim ; Marilyn E. Noz ;
Date 29 Dec 2002
Subject quant-ph gr-qc hep-ph hep-th nucl-th
AbstractLorentz-covariant harmonic oscillator wave functions are constructed from the Lorentz-invariant oscillator differential equation of Feynman, Kislinger, and Ravndal for a two-body bound state. The wave functions are not invariant but covariant. As the differential equation contains the time-separation variable, the wave functions contain the same time-separation variable which does not exist in Schrödinger wave functions. This time-separation variable can be shown to belong to Feynman’s rest of the universe, and can thus be eliminated from the density matrix. The covariant probability interpretation is given. This oscillator formalism explains Feynman’s decoherence mechanism which is exhibited in Feynman’s parton picture.
Source arXiv, quant-ph/0301155
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica