Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 1701.0802

 Article overview



Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction
Jason S. Ross ; Pasqual Rivera ; John Schaibley ; Eric Lee-Wong ; Hongyi Yu ; Takashi Taniguchi ; Kenji Watanabe ; Jiaqiang Yan ; David Mandrus ; David Cobden ; Wang Yao ; Xiaodong Xu ;
Date 3 Jan 2017
AbstractSemiconductor heterostructures are backbones for solid state based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures has enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb-bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe2-WSe2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller compared to the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is two orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.
Source arXiv, 1701.0802
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica