Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1703.5261

 Article overview



Diffusion under confinement: hydrodynamic finite-size effects in simulation
Pauline Simonnin ; Benoit Noetinger ; Carlos Nieto-Draghi ; Virginie Marry ; Benjamin Rotenberg ;
Date 15 Mar 2017
AbstractWe investigate finite-size effects on diffusion in confined fluids using molecular dynamics simulations and hydrodynamic calculations. Specifically, we consider a Lennard-Jones fluid in slit pores without slip at the interface and show that the use of periodic boundary conditions in the directions along the surfaces results in dramatic finite-size effects, in addition to that of the physically relevant confining length. As in the simulation of bulk fluids, these effects arise from spurious hydrodynamic interactions between periodic images and from the constraint of total momentum conservation. We derive analytical expressions for the correction to the diffusion coefficient in the limits of both elongated and flat systems, which are in excellent agreement with the molecular simulation results except for the narrowest pores, where the discreteness of the fluid particles starts to play a role. The present work implies that the diffusion coefficients for wide nanopores computed using elongated boxes suffer from finite-size artifacts which had not been previously appreciated. In addition, our analytical expression provides the correction to be applied to the simulation results for finite (possibly small) systems. It applies not only to molecular but also to all mesoscopic hydrodynamic simulations, including Lattice-Boltzmann, Multi-Particle Collision Dynamics or Dissipative Particle Dynamics, which are often used to investigate confined soft matter involving colloidal particles and polymers.
Source arXiv, 1703.5261
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica