Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1705.0683

 Article overview



All planetesimals born near the Kuiper Belt formed as binaries
Wesley C. Fraser ; Michele t. Bannister ; Rosemary E. Pike ; Michael Marsset ; Megan E. Schwamb ; J. J. Kavelaars ; Pedro Lacerda ; David Nesvornyy ; Kathryn Volk ; audrey Delsanti ; Susan Benecchi ; Matthew J. Lehner ; Keith Noll ; Brett Gladman ; Jean-Marc Petit ; Stephen Gwyn ; Ying-tung Chen ; Shiang-Yu Wang ; Mike Alexandersen ; Todd Burdullis ; Scott Sheppard ; Chad Trujillo ;
Date 1 May 2017
AbstractThe cold classical Kuiper belt objects have low inclinations and eccentricities and are the only Kuiper belt population suspected to have formed in situ. Compared with the dynamically excited populations, which exhibit a broad range of colours and a low binary fraction of ~10% cold classical Kuiper belt objects typically have red optical colours with ~30% of the population found in binary pairs; the origin of these differences remains unclear. We report the detection of a population of blue-coloured, tenuously bound binaries residing among the cold classical Kuiper belt objects. Here we show that widely separated binaries could have survived push-out into the cold classical region during the early phases of Neptune’s migration. The blue binaries may be contaminants, originating at ~38 au, and could provide a unique probe of the formative conditions in a region now nearly devoid of objects. The idea that the blue objects, which are predominantly binary, are the products of push-out requires that the planetesimals formed entirely as multiples. Plausible formation routes include planetesimal formation via pebble accretion and subsequent binary production through dynamic friction and binary formation during the collapse of a cloud of solids.
Source arXiv, 1705.0683
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica