Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1707.5473

 Article overview



Ising Superconductivity and Quantum Phase Transition in Macro-Size Monolayer NbSe2
Ying Xing ; Kun Zhao ; Pujia Shan ; Feipeng Zheng ; Yangwei Zhang ; Hailong Fu ; Yi Liu ; Mingliang Tian ; Chuanying Xi ; Haiwen Liu ; Ji Feng ; Xi Lin ; Shuaihua Ji ; Xi Chen ; Qi-Kun Xue ; Jian Wang ;
Date 18 Jul 2017
AbstractTwo-dimensional (2D) transition metal dichalcogenides (TMDs) have a range of unique physics properties and could be used in the development of electronics, photonics, spintronics and quantum computing devices. The mechanical exfoliation technique of micro-size TMD flakes has attracted particular interest due to its simplicity and cost effectiveness. However, for most applications, large area and high quality films are preferred. Furthermore, when the thickness of crystalline films is down to the 2D limit (monolayer), exotic properties can be expected due to the quantum confinement and symmetry breaking. In this paper, we have successfully prepared macro-size atomically flat monolayer NbSe2 films on bilayer graphene terminated surface of 6H-SiC(0001) substrates by molecular beam epitaxy (MBE) method. The films exhibit an onset superconducting critical transition temperature above 6 K, 2 times higher than that of mechanical exfoliated NbSe2 flakes. Simultaneously, the transport measurements at high magnetic fields reveal that the parallel characteristic field Bc// is at least 4.5 times higher than the paramagnetic limiting field, consistent with Zeeman-protected Ising superconductivity mechanism. Besides, by ultralow temperature electrical transport measurements, the monolayer NbSe2 film shows the signature of quantum Griffiths singularity when approaching the zero-temperature quantum critical point.
Source arXiv, 1707.5473
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica