Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1708.8851

 Article overview



Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies
E. Falgarone ; M. A. Zwaan ; B. Godard ; E. Bergin ; R. J. Ivison ; P. M. Andreani ; F. Bournaud ; R. S. Bussmann ; D. Elbaz ; A. Omont ; I. Oteo ; F. Walter ;
Date 29 Aug 2017
AbstractStarburst galaxies at the peak of cosmic star formation are among the most extreme starforming engines in the universe, producing stars over ~100 Myr. The star formation rates of these galaxies, which exceed 100 $M_odot$ per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Starburst galaxies are therefore ideal targets to unravel the critical interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH$^+$, is a most useful molecule for such studies because it cannot form in cold gas without supra-thermal energy input, so its presence highlights dissipation of mechanical energy or strong UV irradiation. Here, we report the detection of CH$^+$(J=1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts z~2.5. This line has such a high critical density for excitation that it is emitted only in very dense ($>10^5$ cm$^{-3}$) gas, and is absorbed in low-density gas. We find that the CH$^+$ emission lines, which are broader than 1000 km s$^{-1}$, originate in dense shock waves powered by hot galactic winds. The CH$^+$ absorption lines reveal highly turbulent reservoirs of cool ($Tsim 100$K), low-density gas, extending far outside (>10 kpc) the starburst cores (radii <1 kpc). We show that the galactic winds sustain turbulence in the 10 kpc-scale environments of the starburst cores, processing these environments into multi-phase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star formation rates. Another mass input is therefore required for these reservoirs, which could be provided by on-going mergers or cold stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase instead of quenching it.
Source arXiv, 1708.8851
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica