Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1711.5987

 Article overview



YORP and Yarkovsky effects in asteroids (1685) Toro, (2100) Ra-Shalom, (3103) Eger, and (161989) Cacus
J. Durech ; D. Vokrouhlicky ; P. Pravec ; J. Hanus ; D. Farnocchia ; Yu. N. Krugly ; V. R. Ayvazian ; P. Fatka ; V. G. Chiorny ; N. Gaftonyuk ; A. Galad ; R. Groom ; K. Hornoch ; R. Y. Inasaridze ; H. Kucakova ; P. Kusnirak ; M. Lehky ; O. I. Kvaratskhelia ; G. Masi ; I. E. Molotov ; J. Oey ; J. T. Pollock ; V. G. Shevchenko ; J. Vrastil ; B. D. Warner ;
Date 16 Nov 2017
AbstractThe rotation states of small asteroids are affected by a net torque arising from an anisotropic sunlight reflection and thermal radiation from the asteroids’ surfaces. On long timescales, this so-called YORP effect can change asteroid spin directions and their rotation periods. We analyzed lightcurves of four selected near-Earth asteroids with the aim of detecting secular changes in their rotation rates that are caused by YORP. We use the lightcurve inversion method to model the observed lightcurves and include the change in the rotation rate $mathrm{d} omega / mathrm{d} t$ as a free parameter of optimization. We collected more than 70 new lightcurves. For asteroids Toro and Cacus, we used thermal infrared data from the WISE spacecraft and estimated their size and thermal inertia. We also used the currently available optical and radar astrometry of Toro, Ra-Shalom, and Cacus to infer the Yarkovsky effect. We detected a YORP acceleration of $mathrm{d}omega / mathrm{d} t = (1.9 pm 0.3) imes 10^{-8},mathrm{rad},mathrm{d}^{-2}$ for asteroid Cacus. For Toro, we have a tentative ($2sigma$) detection of YORP from a significant improvement of the lightcurve fit for a nonzero value of $mathrm{d}omega / mathrm{d} t = 3.0 imes 10^{-9},mathrm{rad},mathrm{d}^{-2}$. For asteroid Eger, we confirmed the previously published YORP detection with more data and updated the YORP value to $(1.1 pm 0.5) imes 10^{-8},mathrm{rad},mathrm{d}^{-2}$. We also updated the shape model of asteroid Ra-Shalom and put an upper limit for the change of the rotation rate to $|mathrm{d}omega / mathrm{d} t| lesssim 1.5 imes 10^{-8},mathrm{rad},mathrm{d}^{-2}$. Ra-Shalom has a greater than $3sigma$ Yarkovsky detection with a theoretical value consistent with observations assuming its size and/or density is slightly larger than the nominally expected values.
Source arXiv, 1711.5987
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica