Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3158
Articles: 2'155'116
Articles rated: 2589

19 January 2022
 
  » arxiv » 1711.7897

 Article overview


Multi-Hamiltonian formulations and stability of higher-derivative extensions of $3d$ Chern-Simons
V.A. Abakumova ; D.S. Kaparulin ; S.L. Lyakhovich ;
Date 21 Nov 2017
AbstractMost general third-order $3d$ linear gauge vector field theory is considered. The field equations involve, besides the mass, two dimensionless constant parameters. The theory admits two-parameter series of conserved tensors with the canonical energy-momentum being a particular representative of the series. For a certain range of the model parameters, the series of conserved tensors include bounded quantities. This makes the dynamics classically stable, though the canonical energy is unbounded in all the instances. The free third-order equations are shown to admit constrained multi-Hamiltonian form with the zero-zero components of conserved tensors playing the roles of corresponding Hamiltonians. The series of Hamiltonians includes the canonical Ostrogradski’s one, which is unbounded. The Hamiltonian formulations with different Hamiltonians are not connected by canonical transformations. This means, the theory admits inequivalent quantizations at the free level. Covariant interactions are included with spinor fields such that the higher-derivative dynamics remains stable at interacting level if the bounded conserved quantity exists in the free theory. In the first-order formalism, the interacting theory remains Hamiltonian and therefore it admits quantization, though the vertices are not necessarily Lagrangian in the third-order field equations.
Source arXiv, 1711.7897
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2022 - Scimetrica