Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 1901.5487

 Article overview



A Predicted Correlation Between Age Gradient and Star Formation History in FIRE Dwarf Galaxies
Andrew S. Graus ; James S. Bullock ; Alex Fitts ; Michael C. Cooper ; Michael Boylan-Kolchin ; Daniel R. Weisz ; Andrew Wetzel ; Robert Feldmann ; Claude-André Faucher-Giguère ; Eliot Quataert ; Philip F. Hopkins ; Dusan Keres ;
Date 16 Jan 2019
AbstractWe explore the radial variation of star formation histories in dwarf galaxies simulated with Feedback In Realistic Environments (FIRE) physics. The sample contains 9 low-mass field dwarfs with M_ star = 10^5 - 10^7 M_sun from previous FIRE results, and a new suite of 17 higher mass field dwarfs with M_star = 10^7 - 10^9 M_sun introduced here. We find that age gradients are common in our dwarfs, with older stars dominant at large radii. The strength of the gradient correlates with overall galaxy age such that earlier star formation produces a more pronounced gradient. The relation between formation time and strength of the gradient is driven by both mergers and star-formation feedback. Mergers can both steepen and flatten the age gradient depending on the timing of the merger and star formation history of the merging galaxy. In galaxies without significant mergers, early feedback pushes stars to the outskirts at early times. Interestingly, among galaxies without mergers, those with large dark matter cores have flatter age gradients because these galaxies have more late-time feedback. If real galaxies have age gradients as we predict, stellar population studies that rely on sampling a limited fraction of a galaxy can give a biased view of its global star formation history. We show that central fields can be biased young by a few Gyrs while outer fields are biased old. Fields positioned near the 2D half-light radius will provide the least biased measure of a dwarf galaxy’s global star formation history.
Source arXiv, 1901.5487
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica