Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 1904.4980

 Article overview



Transiting Planets near the Snow Line from Kepler. I. Catalog
Hajime Kawahara ; Kento Masuda ;
Date 10 Apr 2019
AbstractWe present a comprehensive catalog of cool (period $Pgtrsim 2,mathrm{yr}$) transiting planet candidates in the four-year light curves from the prime kepler mission. Most of the candidates show only one or two transits and have largely been missed in the original Kepler Object of Interest catalog. Our catalog is based on all known such candidates in the literature as well as new candidates from the search in this paper, and provides a resource to explore the planet population near the snow line of Sun-like stars. We homogeneously performed pixel-level vetting, stellar characterization with GAIA parallax and archival/Subaru spectroscopy, and light-curve modeling to derive planet parameters and to eliminate stellar binaries. The resulting clean sample consists of 67 planet candidates whose radii are typically constrained to 5\%, in which 23 are newly reported. The number of Jupiter-sized candidates (29 with $r>8,R_oplus$) in the sample is consistent with the Doppler occurrence. The smaller candidates are more prevalent (23 with $4<r/R_oplus<8$, 15 with $r/R_oplus<4$) and suggest that long-period Neptune-sized planets are at least as common as the Jupiter-sized ones, although our sample is yet to be corrected for detection completeness. If the sample is assumed to be complete, these numbers imply the occurrence rate of $0.39pm0.07$ planets with $4<r/R_oplus<14$ and $2<P/mathrm{yr}<20$ per FGK dwarf. The stars hosting candidates with $r>4,R_oplus$ have systematically higher [Fe/H] than the Kepler field stars, providing evidence that giant planet--metallicity correlation extends to $P>2,mathrm{yr}$.
Source arXiv, 1904.4980
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica