Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0406624

 Article overview



Understanding the IMF
Richard B. Larson ;
Date 28 Jun 2004
Journal Published in "The Initial Mass Function 50 Years Later", eds. E. Corbelli, F. Palla, and H. Zinnecker (Springer Dordrecht, 2005), p. 329
Subject astro-ph
AbstractIt is suggested that the thermal physics of star-forming clouds may play a more important role than has usually been recognized in the origin of the stellar IMF and in determining a characteristic mass scale. The importance of the thermal physics has been clearly demonstrated for the formation of the first stars in the universe, where it is well understood and results in cooling to a characteristic minimum temperature at a preferred density, and hence in a characteristic scale for fragmentation. In present-day star-forming clouds, an analogous situation may exist in that at low densities the temperature is expected to decrease with increasing density, reaching a minimum when the gas becomes thermally coupled to the dust and then rising slowly at higher densities. A minimum temperature of about 5 K is predicted to occur at a density of the order of 10^(-18) g cm^(-3), and at this point the Jeans mass is about 0.3 solar masses, similar to the mass at which the IMF peaks. If most of the fragmentation in star-forming clouds occurs in filaments, as is suggested by many simulations as well as by observations, fragmentation seems likely to occur preferentially at the density where the temperature reaches a minimum, and the Jeans mass at this point may then determine a characteristic scale for fragmentation and hence a preferred stellar mass.
Source arXiv, astro-ph/0406624
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica