Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0407095

 Article overview



How Do Galaxies Get Their Gas?
Dusan Keres ; Neal Katz ; David H. Weinberg ; Romeel Dave ;
Date 5 Jul 2004
Journal Mon.Not.Roy.Astron.Soc. 363 (2005) 2-28
Subject astro-ph
AffiliationUMass), Neal Katz (UMass), David H. Weinberg (Ohio State), Romeel Dave (U. of Arizona
AbstractWe examine the temperature history of gas accreted by forming galaxies in SPH simulations. About half the gas shock heats to roughly the virial temperature of the galaxy potential well before cooling, condensing, and forming stars, but the other half radiates its acquired gravitational energy at much lower temperatures, typically T<10^5 K, and the histogram of maximum gas temperatures is clearly bimodal. The "cold mode" of gas accretion dominates for low mass galaxies (M_baryon < 10^{10.3}Msun or M_halo < 10^{11.4}Msun), while the conventional "hot mode" dominates the growth of high mass systems. Cold accretion is often directed along filaments, allowing galaxies to efficiently draw gas from large distances, while hot accretion is quasi-spherical. The galaxy and halo mass dependence leads to redshift and environment dependence of cold and hot accretion rates, with cold mode dominating at high redshift and in low density regions today, and hot mode dominating in group and cluster environments at low redshift. Star formation rates closely track accretion rates, and we discuss the physics behind the observed environment and redshift dependence of galactic scale star formation. If we allowed hot accretion to be suppressed by conduction or AGN feedback, then the simulation predictions would change in interesting ways, perhaps resolving conflicts with the colors of ellipticals and the cutoff of the galaxy luminosity function. The transition between cold and hot accretion at M_h ~ 10^{11.4}Msun is similar to that found by Birnboim & Dekel (2003) using 1-d simulations and analytic arguments. The corresponding baryonic mass is tantalizingly close to the scale at which Kauffmann et al. (2003) find a marked shift in galaxy properties. We speculate on connections between these theoretical and observational transitions.
Source arXiv, astro-ph/0407095
Other source [GID 688321] astro-ph/0209279
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica