Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0411756

 Article overview



Classical Cepheid Pulsation Models. X. The Period-Age Relation
G. Bono ; M. Marconi ; S. Cassisi ; F. Caputo ; W. Gieren ; G. Pietrzynski ;
Date 29 Nov 2004
Journal Astrophys.J. 621 (2005) 966-977
Subject astro-ph
AffiliationINAF-Osservatorio Astronomico di Roma), M. Marconi (INAF- Osservatorio Astronomico di Capodimonte), S. Cassisi (INAF-Osservatorio Astronomico di Teramo), F. Caputo (INAF-Osservatorio Astronomico di Roma), W. Gieren (Universidad de Concepcion), G. Pietr
AbstractWe present new Period-Age (PA) and Period-Age-Color (PAC) relations for fundamental and first overtone classical Cepheids. Current predictions rely on homogeneous sets of evolutionary and pulsation models covering a broad range of stellar masses and chemical compositions. We found that PA and PAC relations present a mild dependence upon metal content. Moreover, the use of different PA and PAC relation for fundamental and first overtone Cepheids improves the accuracy of age estimates in the short-period (log P < 1) range (old Cepheids), because they present smaller intrinsic dispersions. At the same time, the use of the PAC relations improves the accuracy in the long-period (log P >= 1) range (young Cepheids), since they account for the position of individual objects inside the instability strip. We performed a detailed comparison between evolutionary and pulsation ages for a sizable sample of LMC (15) and SMC (12) clusters which host at least two Cepheids. In order to avoid deceptive uncertainties in the photometric absolute zero-point, we adopted the homogeneous set of B,V,I data for clusters and Cepheids collected by OGLE. We also adopted the same reddening scale. The different age estimates agree at the level of 20 % for LMC clusters and of 10 % for SMC clusters. We also performed the same comparison for two Galactic clusters (NGC6067, NGC7790) and the difference in age is smaller than 20 %. These findings support the use of PA and PAC relations to supply accurate estimates of individual stellar ages in the Galaxy and in external Galaxies. The main advantage of this approach is its independence from the distance.
Source arXiv, astro-ph/0411756
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica