Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » cond-mat/0404712

 Article overview



Numerical Contractor Renormalization Method for Quantum Spin Models
Sylvain Capponi ; Andreas Laeuchli ; Matthieu Mambrini ;
Date 29 Apr 2004
Journal Phys. Rev. B 70, 104424 (2004) DOI: 10.1103/PhysRevB.70.104424
Subject Strongly Correlated Electrons | cond-mat.str-el
AbstractWe demonstrate the utility of the numerical Contractor Renormalization (CORE) method for quantum spin systems by studying one and two dimensional model cases. Our approach consists of two steps: (i) building an effective Hamiltonian with longer ranged interactions using the CORE algorithm and (ii) solving this new model numerically on finite clusters by exact diagonalization. This approach, giving complementary information to analytical treatments of the CORE Hamiltonian, can be used as a semi-quantitative numerical method. For ladder type geometries, we explicitely check the accuracy of the effective models by increasing the range of the effective interactions. In two dimensions we consider the plaquette lattice and the kagome lattice as non-trivial test cases for the numerical CORE method. On the plaquette lattice we have an excellent description of the system in both the disordered and the ordered phases, thereby showing that the CORE method is able to resolve quantum phase transitions. On the kagome lattice we find that the previously proposed twofold degenerate S=1/2 basis can account for a large number of phenomena of the spin 1/2 kagome system. For spin 3/2 however this basis does not seem to be sufficient anymore. In general we are able to simulate system sizes which correspond to an 8x8 lattice for the plaquette lattice or a 48-site kagome lattice, which are beyond the possibilities of a standard exact diagonalization approach.
Source arXiv, cond-mat/0404712
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica