Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 2002.6925

 Article overview



SMM J04135+10277: A distant QSO-starburst system caught by ALMA
Judit Fogasy ; Kirsten K. Knudsen ; Guillaume Drouart ; Claudia del P. Lagos ; Lulu Fan ;
Date 17 Feb 2020
AbstractThe gas content of galaxies is a key factor for their growth, starting from star formation and black hole accretion to galaxy mergers. Thus, characterising its properties via observations of tracers like the CO emission line is of big importance in order to understand the bigger picture of galaxy evolution. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of dust continuum, CO(5-4) and CO(8-7) line emission in the quasar--star-forming companion system SMM J04135+10277 (z=2.84). Earlier low-$J$ CO studies of this system found a huge molecular gas reservoir associated to the companion galaxy, while the quasar appeared gas-poor. Our CO observations revealed that the host galaxy of the quasar is also gas-rich, with an estimated molecular gas mass of $sim(0.7-2.3) imes10^{10}$ M$_{odot}$. The CO line profiles of the companion galaxy are broad ($sim1000$ km s$^{-1}$), and show signs of rotation of a compact, massive system. In contrast to previous far-infrared observations, we resolve the continuum emission and detect both sources, with the companion galaxy dominating the dust continuum and the quasar having a $sim25\%$ contribution to the total dust emission. By fitting the infrared spectral energy distribution of the sources with extsc{MR-MOOSE} and empirical templates, the infrared luminosities of the quasar and the companion are in the range of $L_{ m IR, QSO}sim(2.1-9.6) imes10^{12}$ L$_{odot}$ and $L_{ m IR, Comp.}sim(2.4-24) imes10^{12}$ L$_{odot}$, while the estimated star formation rates are $sim210-960$ M$_{odot}$ yr$^{-1}$ and $sim240-2400$ M$_{odot}$ yr$^{-1}$, respectively. Our results demonstrate that non-detection of low-$J$ CO transition lines in similar sources does not necessarily imply the absence of massive molecular gas reservoir but that the excitation conditions favour the excitation of high-$J$ transitions.
Source arXiv, 2002.6925
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica