Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 2002.8964

 Article overview



Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-Forming Galaxies
Jiayi Sun ; Adam K. Leroy ; Eve C. Ostriker ; Annie Hughes ; Erik Rosolowsky ; Andreas Schruba ; Eva Schinnerer ; Guillermo A. Blanc ; Christopher Faesi ; J. M. Diederik Kruijssen ; Sharon Meidt ; Dyas Utomo ; Frank Bigiel ; Alberto D. Bolatto ; Mélanie Chevance ; I-Da Chiang ; Daniel Dale ; Eric Emsellem ; Simon C. O. Glover ; Kathryn Grasha ; Jonathan Henshaw ; Cinthya N. Herrera ; Maria Jesus Jimenez-Donaire ; Janice C. Lee ; Jérôme Pety ; Miguel Querejeta ; Toshiki Saito ; Karin Sandstrom ; Antonio Usero ;
Date 20 Feb 2020
AbstractWe compare the observed turbulent pressure in molecular gas, $P_mathrm{turb}$, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, $P_mathrm{DE}$. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multi-wavelength data that traces the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that $P_mathrm{turb}$ correlates with, but almost always exceeds the estimated $P_mathrm{DE}$ on kiloparsec scales. This indicates that the molecular gas is over-pressurized relative to the large-scale environment. We show that this over-pressurization can be explained by the clumpy nature of molecular gas; a revised estimate of $P_mathrm{DE}$ on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed $P_mathrm{turb}$ in galaxy disks. We also find that molecular gas with cloud-scale ${P_mathrm{turb}}approx{P_mathrm{DE}}gtrsim{10^5,k_mathrm{B},mathrm{K,cm^{-3}}}$ in our sample is more likely to be self-gravitating, whereas gas at lower pressure appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between $P_mathrm{turb}$ and the observed SFR surface density, $Sigma_mathrm{SFR}$, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between $Sigma_mathrm{SFR}$ and kpc-scale $P_mathrm{DE}$ in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale $P_mathrm{DE}$ reported in previous works.
Source arXiv, 2002.8964
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica