Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » cond-mat/0410463

 Article overview



The upper critical field of filamentary Nb3Sn conductors
A. Godeke ; M.C. Jewell ; C.M. Fischer ; A.A. Squitieri ; P.J. Lee ; D.C. Larbalestier ;
Date 19 Oct 2004
Subject Superconductivity | cond-mat.supr-con
AbstractWe have examined the upper critical field of a large and representative set of present multi-filamentary Nb3Sn wires and one bulk sample over a temperature range from 1.4 K up to the zero field critical temperature. Since all present wires use a solid-state diffusion reaction to form the A15 layers, inhomogeneities with respect to Sn content are inevitable, in contrast to some previously studied homogeneous samples. Our study emphasizes the effects that these inevitable inhomogeneities have on the field-temperature phase boundary. The property inhomogeneities are extracted from field-dependent resistive transitions which we find broaden with increasing inhomogeneity. The upper 90-99 % of the transitions clearly separates alloyed and binary wires but a pure, Cu-free binary bulk sample also exhibits a zero temperature critical field that is comparable to the ternary wires. The highest mu0Hc2 detected in the ternary wires are remarkably constant: The highest zero temperature upper critical fields and zero field critical temperatures fall within 29.5 +/- 0.3 T and 17.8 +/- 0.3 K respectively, independent of the wire layout. The complete field-temperature phase boundary can be described very well with the relatively simple Maki-DeGennes model using a two parameter fit, independent of composition, strain state, sample layout or applied critical state criterion.
Source arXiv, cond-mat/0410463
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica