Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » 2009.11126

 Article overview



The Evolution of the Baryons Associated with Galaxies Averaged over Cosmic Time and Space
Fabian Walter ; Chris Carilli ; Marcel Neeleman ; Roberto Decarli ; Gergo Popping ; Rachel S. Somerville ; Manuel Aravena ; Frank Bertoldi ; Leindert Boogaard ; Pierre Cox ; Elisabete da Cunha ; Benjamin Magnelli ; Danail Obreschkow ; Dominik Riechers ; Hans-Walter Rix ; Ian Smail ; Axel Weiss ; Roberto J. Assef ; Franz Bauer ; Rychard Bouwens ; Thierry Contini ; Paulo C. Cortes ; Emanuele Daddi ; Tanio Diaz-Santo ; Jorge Gonzalez-Lopez ; Joseph Hennawi ; Jacqueline A. Hodge ; Rob Ivison ; Pascal Oesch ; Mark Sargent ; Paul van der Werf ; Jeff Wagg ; L. Y. Aaron Yung ;
Date 23 Sep 2020
AbstractWe combine the recent determination of the evolution of the cosmic density of molecular gas (H_2) using deep, volumetric surveys, with previous estimates of the cosmic density of stellar mass, star formation rate and atomic gas (HI), to constrain the evolution of baryons associated with galaxies averaged over cosmic time and space. The cosmic HI and H_2 densities are roughly equal at z~1.5. The H_2 density then decreases by a factor 6^{+3}_{-2} to today’s value, whereas the HI density stays approximately constant. The stellar mass density is increasing continuously with time and surpasses that of the total gas density (HI and H_2) at redshift z~1.5. The growth in stellar mass cannot be accounted for by the decrease in cosmic H_2 density, necessitating significant accretion of additional gas onto galaxies. With the new H_2 constraints, we postulate and put observational constraints on a two step gas accretion process: (i) a net infall of ionized gas from the intergalactic/circumgalactic medium to refuel the extended HI reservoirs, and (ii) a net inflow of HI and subsequent conversion to H_2 in the galaxy centers. Both the infall and inflow rate densities have decreased by almost an order of magnitude since z~2. Assuming that the current trends continue, the cosmic molecular gas density will further decrease by about a factor of two over the next 5 Gyr, the stellar mass will increase by approximately 10%, and cosmic star formation activity will decline steadily toward zero, as the gas infall and accretion shut down.
Source arXiv, 2009.11126
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica