Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » 2010.06014

 Article overview



Low-loss integrated nanophotonic circuits with layered semiconductor materials
Tianyi Liu ; Ioannis Paradisanos ; Jijun He ; Alisson R. Cadore ; Junqiu Liu ; Mikhail Churaev ; Rui Ning Wang ; Arslan S. Raja ; Clément Javerzac-Galy ; Philippe Rölli ; Domenico De Fazio ; Barbara L. T. Rosa ; Sefaattin Tongay ; Giancarlo Soavi ; Andrea C. Ferrari ; Tobias J. Kippenberg ;
Date 12 Oct 2020
AbstractMonolayer transition metal dichalcogenides with direct bandgaps are emerging candidates for microelectronics, nano-photonics, and optoelectronics. Transferred onto photonic integrated circuits (PICs), these semiconductor materials have enabled new classes of light-emitting diodes, modulators and photodetectors, that could be amenable to wafer-scale manufacturing. For integrated photonic devices, the optical losses of the PICs are critical. In contrast to silicon, silicon nitride (Si3N4) has emerged as a low-loss integrated platform with a wide transparency window from ultraviolet to mid-infrared and absence of two-photon absorption at telecommunication bands. Moreover, it is suitable for nonlinear integrated photonics due to its high Kerr nonlinearity and high-power handing capability. These features of Si3N4 are intrinsically beneficial for nanophotonics and optoelectronics applications. Here we report a low-loss integrated platform incorporating monolayer molybdenum ditelluride (1L-MoTe2) with Si3N4 photonic microresonators. We show that, with the 1L-MoTe2, microresonator quality factors exceeding 3 million in the telecommunication O-band to E-band are maintained. We further investigate the change of microresonator dispersion and resonance shift due to the presence of 1L-MoTe2, and extrapolate the optical loss introduced by 1L-MoTe2 in the telecommunication bands, out of the excitonic transition region. Our work presents a key step for low-loss, hybrid PICs with layered semiconductors without using heterogeneous wafer bonding.
Source arXiv, 2010.06014
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica