Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 2011.10391

 Article overview



Activity-rotation in the dM4 star Gl 729. A possible chromospheric cycle
R.V. Ibañez Bustos ; A.P. Buccino ; S. Messina ; A.F. Lanza ; P.J.D. Mauas ;
Date 20 Nov 2020
AbstractRecently, new debates about the role of layers of strong shear have emerged in stellar dynamo theory. Further information on the long-term magnetic activity of fully convective stars could help determine whether their underlying dynamo could sustain activity cycles similar to the solar one.
We performed a thorough study of the short- and long-term magnetic activity of the young active dM4 star Gl 729. First, we analyzed long-cadence $K2$ photometry to characterize its transient events (e.g., flares) and global and surface differential rotation. Then, from the Mount Wilson $S$-indexes derived from CASLEO spectra and other public observations, we analyzed its long-term activity between 1998 and 2020 with four different time-domain techniques to detect cyclic patterns. Finally, we explored the chromospheric activity at different heights with simultaneous measurements of the H$alpha$ and the Na I D indexes, and we analyzed their relations with the $S$-Index.
We found that the cumulative flare frequency follows a power-law distribution with slope $sim- 0.73$ for the range $10^{32}$ to $10^{34}$ erg. We obtained $P_{rot} = (2.848 pm 0.001)$ days, and we found no evidence of differential rotation. We also found that this young active star presents a long-term activity cycle with a length of $ ext{about four}$ years; there is less significant evidence of a shorter cycle of $0.8$ year. The star also shows a broad activity minimum between 1998 and 2004. We found a correlation between the S index, on the one hand, and the H$alpha$ the Na I D indexes, on the other hand, although the saturation level of these last two indexes is not observed in the Ca lines.
Because the maximum-entropy spot model does not reflect migration between active longitudes, this activity cycle cannot be explained by a solar-type dynamo. It is probably caused by an $alpha^2$-dynamo.
Source arXiv, 2011.10391
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica