Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3285
Articles: 2'239'788
Articles rated: 2592

09 August 2022
 
  » arxiv » hep-ph/0406137

 Article overview


Evaluating the Gapless Color-Flavor Locked Phase
Mark Alford ; Chris Kouvaris ; Krishna Rajagopal ;
Date 11 Jun 2004
Journal Phys.Rev. D71 (2005) 054009
Subject hep-ph nucl-th
AffiliationWashington Univ, St Louis), Chris Kouvaris (MIT), Krishna Rajagopal (MIT
AbstractIn neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We recently argued that the next phase down in density (as a function of decreasing quark chemical potential mu or increasing strange quark mass M_s) is the new ``gapless CFL’’ (``gCFL’’) phase in which only seven quasiparticles have a gap, while there are gapless quasiparticles described by two dispersion relations at three momenta. There is a continuous quantum phase transition from CFL to gCFL quark matter at M_s^2/mu approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken a linear combination "Q-tilde" of electric and color charges, but it is a Q-tilde-conductor with gapless Q-tilde-charged quasiparticles and a nonzero electron density. In this paper, we evaluate the gapless CFL phase, in several senses. We present the details underlying our earlier work which showed how this phase arises. We display all nine quasiparticle dispersion relations in full detail. Using a general pairing ansatz that only neglects effects that are known to be small, we perform a comparison of the free energies of the gCFL, CFL, 2SC, gapless 2SC, and 2SCus phases. We conclude that as density drops, making the CFL phase less favored, the gCFL phase is the next spatially uniform quark matter phase to occur. A mixed phase made of colored components would have lower free energy if color were a global symmetry, but in QCD such a mixed phase is penalized severely.
Source arXiv, hep-ph/0406137
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2022 - Scimetrica