Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » quant-ph/0406159

 Article overview



Quantum state transmission via a spin ladder as a robust data bus
Y.Li ; T.Shi ; B.Chen ; Z.Song ; C.P.Sun ;
Date 22 Jun 2004
Subject Quantum Physics; Strongly Correlated Electrons | quant-ph cond-mat.str-el
AbstractWe explore the physical mechanism to coherently transfer the quantum information of spin by connecting two spins to an isotropic antiferromagnetic spin ladder system as data bus. Due to a large spin gap existing in such a perfect medium, the effective Hamiltonian of the two connected spins can be archived as that of Heisenberg type, which possesses a ground state with maximal entanglement. We show that the effective coupling strength is inversely proportional to the distance of the two spins and thus the quantum information can be transferred between the two spins separated by a longer distance, i.e. the characteristic time of quantum state transferring linearly depends on the distance.
Source arXiv, quant-ph/0406159
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica