Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » 2203.13914

 Article overview



Wald's entropy in Coincident General Relativity
Lavinia Heisenberg ; Simon Kuhn ; Laurens Walleghem ;
Date 25 Mar 2022
AbstractThe equivalence principle and its universality enables the geometrical formulation of gravity. In the standard formulation of General Relativity ’a la Einstein, the gravitational interaction is geometrized in terms of the spacetime curvature. However, if we embrace the geometrical character of gravity, two alternative, though equivalent, formulations of General Relativity emerge in flat spacetimes, in which gravity is fully ascribed either to torsion or to non-metricity. The latter allows a much simpler formulation of General Relativity oblivious to the affine spacetime structure, the Coincident General Relativity. The entropy of a black hole can be computed using the Euclidean path integral approach, which strongly relies on the addition of boundary or regulating terms in the standard formulation of General Relativity. A more fundamental derivation can be performed using Wald’s formula, in which the entropy is directly related to Noether charges and is applicable to general theories with diffeomorphism invariance. In this work we extend Wald’s Noether charge method for calculating black hole entropy to spacetimes endowed with non-metricity. Using this method, we show that Coincident General Relativity with an improved action principle gives the same entropy as the well-known entropy in standard General Relativity. Furthermore the first law of black hole thermodynamics holds and an explicit expression for the energy appearing in the first law is obtained.
Source arXiv, 2203.13914
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica