Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0506368

 Article overview



Jet Formation in Black Hole Accretion Systems I: Theoretical Unification Model
Jonathan C. McKinney ;
Date 16 Jun 2005
Subject astro-ph
AbstractTwo types of relativistic jets are suggested to form near accreting black holes: a potentially ultrarelativistic Poynting-dominated jet and a Poynting-baryon jet. One source of jet matter is electron-positron pair production, which is driven by neutrino annihilation in GRBs and photon annihilation in AGN and x-ray binaries. GRB Poynting-dominated jets are also loaded by electron-proton pairs by the collisional cascade of Fick-diffused free neutrons. We show that, for the collapsar model, the neutrino-driven enthalpy flux (classic fireball model) is probably dominated by the Blandford-Znajek energy flux, which predicts a jet Lorentz factor of $Gammasim 100-1000$. We show that radiatively inefficient AGN, such as M87, are synchrotron-cooling limited to $Gammasim 2-10$. Radiatively efficient x-ray binaries, such as GRS1915+105, are Compton-drag limited to $Gamma lesssim 2$, but the jet may be destroyed by Compton drag. However, the Poynting-baryon jet is a collimated outflow with $Gamma sim 1-3$. The jet from radiatively efficient systems, such as microquasar GRS1915+105, may instead be a Poynting-baryon jet that is only relativistic when the disk is geometrically thick. In a companion paper, general relativistic hydromagnetic simulations of black hole accretion with pair creation are used to simulate jet formation in GRBs, AGN, and x-ray binaries.
Source arXiv, astro-ph/0506368
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica