Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » astro-ph/0508470

 Article overview



A Method for Deriving Accurate Gas-Phase Abundances for the Multiphase Interstellar Galactic Halo
J. Christopher Howk ; Kenneth R. Sembach ; Blair D. Savage ;
Date 23 Aug 2005
Subject astro-ph
AffiliationUCSD/Notre Dame), Kenneth R. Sembach (STScI), and Blair D. Savage (Wisconsin
AbstractWe describe a new method for determining total gas-phase abundances for the Galactic ISM with minimal ionization uncertainties. For sight lines toward globular clusters containing both UV-bright stars and radio pulsars, one can measure column densities of HI and several metal ions using UV absorption measurements and of H II using radio dispersion measurements, thereby minimizing ionization uncertainties. We apply this method to the globular cluster Messier 3 sight line using FUSE and HST ultraviolet spectroscopy of the post-asymptotic giant branch star von Zeipel 1128 and radio observations by Ransom et al. of millisecond pulsars. Ionized hydrogen is 45+/-5% of the total along this sight line, the highest measured fraction along a high-latitude pulsar sight line. We derive total gas-phase abundances log N(S)/N(H) = -4.87+/-0.03 and log N(Fe)/N(H) = -5.27+/-0.05. Our derived sulfur abundance is in excellent agreement with recent solar system determinations of Asplund, Grevesse, & Sauval, but -0.14 dex below the solar system abundance typically adopted in studies of the ISM. The iron abundance is ~-0.7 dex below the solar system abundance, consistent with significant depletion. Abundance estimates derived by simply comparing S II and Fe II to H I are +0.17 and +0.11 dex higher, respectively, than our measurements. Ionization corrections to the gas-phase abundances measured in the standard way are, therefore, significant compared with the measurement uncertainties along this sight line. The systematic uncertainties associated with the uncertain contribution to the electron column density from ionized helium could raise these abundances by <+0.03 dex (+7%). [Abridged]
Source arXiv, astro-ph/0508470
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica