Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » hep-th/0502134

 Article overview



The Cocycle of the Quantum HJ Equation and the Stress Tensor of CFT
Marco Matone ;
Date 15 Feb 2005
Journal Braz.J.Phys. 35 (2005) 316-327
Subject High Energy Physics - Theory; Analysis of PDEs; Mathematical Physics | hep-th math-ph math.AP math.MP quant-ph
AbstractWe consider two theorems formulated in the derivation of the Quantum Hamilton-Jacobi Equation from the EP. The first one concerns the proof that the cocycle condition uniquely defines the Schwarzian derivative. This is equivalent to show that the infinitesimal variation of the stress tensor "exponentiates" to the Schwarzian derivative. The cocycle condition naturally defines the higher dimensional version of the Schwarzian derivative suggesting a role in the transformation properties of the stress tensor in higher dimensional CFT. The other theorem shows that energy quantization is a direct consequence of the existence of the quantum Hamilton-Jacobi equation under duality transformations as implied by the EP.
Source arXiv, hep-th/0502134
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica