Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/9711142

 Article overview



Transonic Magnetic Slim Accretion Disks and kilo-Hertz Quasi-Periodic Oscillations in Low-Mass X-Ray Binaries
Dong Lai ;
Date 12 Nov 1997
Subject astro-ph
AffiliationCaltech and Cornell
AbstractThe inner regions of accretion disks of weakly magnetized neutron stars are affected by general relativity and stellar magnetic fields. Even for field strengths sufficiently small so that there is no well-defined magnetosphere surrounding the neutron star, there is still a region in the disk where magnetic field stress plays an important dynamical role. We construct magnetic slim disk models appropriate for neutron stars in low-mass X-ray binaries (LMXBs) which incorporate both effects (GR and magnetic fields). The B-field--disk interaction is treated in a phenomenological manner, allowing for both closed and open field configurations. We show that even for surface magnetic fields as weak as $10^7-10^8$ G, the sonic point of the accretion flow can be significantly modified from the pure GR value (near $6M$). We derive an approximate analytical expression for the sonic radius and show that it mainly depends on the surface field strength $B_0$ and mass accretion rate $dot M$ through the ratio $b^2propto B_0^2/dot M$. The sonic radius thus obtained approaches the usual Alfven radius for high $b^2$, and asymptotes to $6M$ as $b^2 o 0$. We therefore suggest that for neutron stars in LMXBs, the distinction between the disk sonic radius and the magnetospheric radius may not exist. We apply our theoretical results to the kHz QPOs observed in the X-ray fluxes of LMXBs. If these QPOs are associated with the orbital frequency at the inner radius of the disk, then the QPO frequencies and their correlation with mass accretion rate can provide useful constraints on the nature of the magnetic field -- disk interactions as well as on the structure of magnetic fields in LMXBs. Current observational data may suggest that the magnetic fields in LMXBs have complex topology.
Source arXiv, astro-ph/9711142
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica