Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » astro-ph/9712142

 Article overview



CDM-Variant Cosmological Models - I: Simulations and Preliminary Comparisons
Michael A. K. Gross ; Rachel S. Somerville ; Joel R. Primack ; Jon Holtzman ; Anatoly Klypin ;
Date 10 Dec 1997
Subject astro-ph
Affiliation1,2), Rachel S. Somerville (1,3), Joel R. Primack , Jon Holtzman , Anatoly Klypin ( UC Santa Cruz, NASA/Goddard Space Flight Center, Hebrew University of Jerusalem, New Mexico State University
AbstractWe present two matched sets of five simulations each, covering five presently favored simple modifications to the standard cold dark matter (CDM) scenario. One simulation suite, with a linear box size of 75 Mpc/h, is designed for high resolution and good statistics on the group/poor cluster scale, and the other, with a box size of 300 Mpc/h, is designed for good rich cluster statistics. All runs had 57 million cold particles, and models with massive neutrinos had an additional 113 million hot particles. We consider separately models with massive neutrinos, tilt, curvature, and a nonzero cosmological constant in addition to the standard CDM model. We find that our tilted Omega+Omega_Lambda=1 (TLCDM) model produces too much small-scale power by a factor of ~3, and our open Lambda=0 (OCDM) model also exceeds observed small-scale power by a factor of 2. In addition, we take advantage of the large dynamic range in detectable halo masses our simulations allow to check the shape of the Press-Schechter approximation. We find good fits at cluster masses for delta_c=1.27--1.35 for a Gaussian filter and delta_c=1.57--1.73 for a tophat filter. However, Press-Schechter overpredicts the number density of halos compared to the simulations in the high resolution suite by a weakly cosmology-dependent factor of 1.5--2 at galaxy and group masses, which cannot be fixed by adjusting delta_c within reasonable bounds. An appendix generalizes the spherical collapse model to any isotropic cosmology.
Source arXiv, astro-ph/9712142
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica