Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » hep-th/9305080

 Article overview



Structure of Topological Lattice Field Theories in Three Dimensions
Stephen-wei Chung ; Masafumi Fukuma ; Alfred Shapere ;
Date 19 May 1993
Journal Int.J.Mod.Phys. A9 (1994) 1305-1360
Subject High Energy Physics - Theory; Quantum Algebra | hep-th math.QA
AbstractWe construct and classify topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, we impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two new local lattice moves. Invariant solutions are in one--to--one correspondence with Hopf algebras satisfying a certain constraint. As an example, we study in detail the topological lattice field theory corresponding to the Hopf algebra based on the group ring $C[G]$, and show that it is equivalent to lattice gauge theory at zero coupling, and to the Ponzano--Regge theory for $G=$SU(2).
Source arXiv, hep-th/9305080
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica