Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » hep-th/9307167

 Article overview



Towards a statistical mechanics of nonabelian vortices
C.Kobdaj ; S.Thomas ;
Date 27 Jul 1993
Journal Nucl.Phys. B413 (1994) 689-722
Subject hep-th cond-mat hep-ph
AbstractA study is presented of classical field configurations describing nonabelian vortices in two spatial dimensions, when a global SO(3) symmetry is spontaneously broken to a discrete group IK isomorphic to the group of integers mod 4. The vortices in this model are characterized by the nonabelian fundamental group (pi_1 (SO(3)/{IK}) ), which is isomorphic to the group of quaternions. We present an ansatz describing isolated vortices and prove that it is stable to perturbations. Kinematic constraints are derived which imply that at a finite temperature, only two species of vortices are stable to decay, due to `dissociation’. The latter process is the nonabelian analogue of the instability of charge (|q| >1 abelian vortices to dissociation into those with charge (|q| = 1). The energy of configurations containing at maximum two vortex-antivortex pairs, is then computed. When the pairs are all of the same type, we find the usual Coulombic interaction energy as in the abelian case. When they are different, one finds novel interactions which are a departure from Coulomb like behavior. Therefore one can compute the grand canonical partition function (GCPF) for thermal pair creation of nonabelian vortices, in the approximation where the fugacities for vortices of each type are small. It is found that the vortex fugacities depend on a real continuous parameter awhich characterize the degeneracy of the vacuum. Depending on the relative sizes of these fugacities, the vortex gas will be dominated by one of either of the two types mentioned above. In these regimes, we expect the standard Kosterlitz-Thouless phase transitions to occur, as in systems of abelian vortices in 2-dimensions. Between these two regimes, the gas contains pairs of both types, so nonabelian effects will be important.
Source arXiv, hep-th/9307167
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica