Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0002230

 Article overview



Atomic data from the Iron Project.XLIII. Transition probabilities for Fe V
Sultana N. Nahar ; Franck Delahaye ; Anil K. Pradhan ; C.J. Zeippen ;
Date 10 Feb 2000
Subject Astrophysics; Atomic Physics | astro-ph physics.atom-ph
Affiliation1 - Ohio State University, 2 - Observatoire de Meudon
AbstractAn extensive set of dipole-allowed, intercombination, and forbidden transition probabilities for Fe V is presented. The Breit-Pauli R-matrix (BPRM) method is used to calculate 1.46 x 10^6 oscillator strengths for the allowed and intercombination E1 transitions among 3,865 fine-structure levels dominated by configuration complexes with n <= 10 and l <= 9. These data are complemented by an atomic structure configuration interaction (CI) calculation using the SUPERSTRUCTURE program for 362 relativistic quadrupole (E2) and magnetic dipole (M1) transitions among 65 low-lying levels dominated by the 3d^4 and 3d^ 4s configurations. Procedures have been developed for the identification of the large number of fine-structure levels and transitions obtained through the BPRM calculations. The target ion Fe VI is represented by an eigenfunction expansion of 19 fine-structure levels of 3d^3 and a set of correlation configurations. Fe V bound levels are obtained with angular and spin symmetries SLpi and Jpi of the (e + Fe VI) system such that 2S+1 = 5,3,1, L <= 10, J <= 8 of even and odd parities. The completeness of the calculated dataset is verified in terms of all possible bound levels belonging to relevant LS terms and transitions in correspondence with the LS terms. The fine-structure averaged relativistic values are compared with previous Opacity Project LS coupling data and other works. The 362 forbidden transition probabilities considerably extend the available data for the E2 and M1 transtions, and are in good agreement with those computed by Garstang for the 3d^4 transitions.
Source arXiv, astro-ph/0002230
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica