Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » astro-ph/0008473

 Article overview



Neutrino-electron processes in a strongly magnetized thermal plasma
Stephen J. Hardy ; Markus H. Thoma ;
Date 30 Aug 2000
Journal Phys.Rev. D63 (2001) 025014
Subject astro-ph hep-ph nucl-th
AbstractWe present a new method of calculating the rate of neutrino-electron interactions in a strong magnetic field based on finite temperature field theory. Using this method, in which the effect of the magnetic field on the electron states is taken into account exactly, we calculate the rates of all of the lowest order neutrino-electron interactions in a plasma. As an example of the use of this technique, we explicitly calculate the rate at which neutrinos and antineutrinos annihilate in a highly magnetized plasma, and compare that to the rate in an unmagnetized plasma. The most important channel for energy deposition is the gyromagnetic absorption of a neutrino-antineutrino pair on an electron or positron in the plasma ($ uar{ u} e^pmleftrightarrow e^pm$). Our results show that the rate of annihilation increases with the magnetic field strength once it reaches a certain critical value, which is dependent on the incident neutrino energies and the ambient temperature of the plasma. It is also shown that the annihilation rates are strongly dependent on the angle between the incident particles and the direction of the magnetic field. If sufficiently strong fields exist in the regions surrounding the core of a type II supernovae or in the central engines of gamma ray bursts, these processes will lead to more efficient plasma heating mechanism than in an unmagnetized medium, and moreover, one which is intrinsically anisotropic.
Source arXiv, astro-ph/0008473
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica