Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0011520

 Article overview



Molecular Gas in the Powerful Radio Galaxies 3C~31 and 3C~264: Major or Minor Mergers?
J. Lim ; S. Leon ; F. Combes ; Dinh-V-Trung ;
Date 28 Nov 2000
Subject astro-ph
AffiliationASIAA, Taiwan), S. Leon (Uni. of Cologne), F. Combes (Obs. of Paris), Dinh-V-Trung (ASIAA, Taiwan
AbstractWe report the detection of $^{12}$CO~($1 o 0$) and $^{12}$CO~($2 o 1$) emission from the central regions ($lesssim 5$--$10 { m kpc}$) of the two powerful radio galaxies 3C~31 and 3C~264. Their individual CO emission exhibits a double-horned line profile that is characteristic of an inclined rotating disk with a central depression at the rising part of its rotation curve. The inferred disk or ring distributions of the molecular gas is consistent with the observed presence of dust disks or rings detected optically in the cores of both galaxies. For a CO to H$_2$ conversion factor similar to that of our Galaxy, the corresponding total mass in molecular hydrogen gas is $(1.3 pm 0.2) imes 10^9 { m M_{odot}}$ in 3C~31 and $(0.31 pm 0.06) imes 10^9 { m M_{odot}}$ in 3C~264. Despite their relatively large molecular-gas masses and other peculiarities, both 3C~31 and 3C~264, as well as many other powerful radio galaxies in the (revised) 3C catalog, are known to lie within the fundamental plane of normal elliptical galaxies. We reason that if their gas originates from the mergers of two gas-rich disk galaxies, as has been invoked to explain the molecular gas in other radio galaxies, then both 3C~31 and 3C~264 must have merged a long time (a few billion years or more) ago but their remnant elliptical galaxies only recently (last tens of millions of years or less) become active in radio. Instead, we argue that the cannibalism of gas-rich galaxies provides a simpler explanation for the origin of molecular gas in the elliptical hosts of radio galaxies. Given the transient nature of their observed disturbances, these galaxies probably become active in radio soon after the accretion event when sufficient molecular gas agglomerates in their nuclei.
Source arXiv, astro-ph/0011520
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica