Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0609013

 Article overview



Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: current limits and future prospects
F. A. Jenet ; G. B. Hobbs ; W. van Straten ; R. N. Manchester ; M. Bailes ; J. P. W. Verbiest ; R. T. Edwards ; A. W. Hotan ; J. M. Sarkissian ; S. M. Ord ;
Date 1 Sep 2006
AbstractUsing a statistically rigorous analysis method, we place limits on the existence of an isotropic stochastic gravitational wave background using pulsar timing observations. We consider backgrounds whose characteristic strain spectra may be described as a power-law dependence with frequency. Such backgrounds include an astrophysical background produced by coalescing supermassive black-hole binary systems and cosmological backgrounds due to relic gravitational waves and cosmic strings. Using the best available data, we obtain an upper limit on the energy density per unit logarithmic frequency interval of Omega^{ m SMBH}_g(1/8yr) h^2 <= 1.9 x 10^{-8} for an astrophysical background which is five times more stringent than the earlier Kaspi et al. (1994) limit of 1.1 x 10^{-7}. We also provide limits on a background due to relic gravitational waves and cosmic strings of Omega^{ m relic}_g(1/8yr) h^2 <= 2.0 x 10^{-8} and Omega^{ m cs}_g(1/8yr) h^2 <= 1.9 x 10^{-8} respectively. All of the quoted upper limits correspond to a 0.1% false alarm rate together with a 95% detection rate. We discuss the physical implications of these results and highlight the future possibilities of the Parkes Pulsar Timing Array project. We find that our current results can 1) constrain the merger rate of supermassive binary black hole systems at high red shift, 2) rule out some relationships between the black hole mass and the galactic halo mass, 3) constrain the rate of expansion in the inflationary era and 4) provide an upper bound on the dimensionless tension of a cosmic string background.
Source arXiv, astro-ph/0609013
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica