Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » cs/0609046

 Article overview



Exhausting Error-Prone Patterns in LDPC Codes
Chih-Chun Wang ; Sanjeev R. Kulkarni ; H. Vincent Poor ;
Date 11 Sep 2006
Subject Information Theory; Data Structures and Algorithms
AbstractIt is proved in this work that exhaustively determining bad patterns in arbitrary, finite low-density parity-check (LDPC) codes, including stopping sets for binary erasure channels (BECs) and trapping sets (also known as near-codewords) for general memoryless symmetric channels, is an NP-complete problem, and efficient algorithms are provided for codes of practical short lengths n~=500. By exploiting the sparse connectivity of LDPC codes, the stopping sets of size <=13 and the trapping sets of size <=11 can be efficiently exhaustively determined for the first time, and the resulting exhaustive list is of great importance for code analysis and finite code optimization. The featured tree-based narrowing search distinguishes this algorithm from existing ones for which inexhaustive methods are employed. One important byproduct is a pair of upper bounds on the bit-error rate (BER) & frame-error rate (FER) iterative decoding performance of arbitrary codes over BECs that can be evaluated for any value of the erasure probability, including both the waterfall and the error floor regions. The tightness of these upper bounds and the exhaustion capability of the proposed algorithm are proved when combining an optimal leaf-finding module with the tree-based search. These upper bounds also provide a worst-case-performance guarantee which is crucial to optimizing LDPC codes for extremely low error rate applications, e.g., optical/satellite communications. Extensive numerical experiments are conducted that include both randomly and algebraically constructed LDPC codes, the results of which demonstrate the superior efficiency of the exhaustion algorithm and its significant value for finite length code optimization.
Source arXiv, cs/0609046
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica