Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » astro-ph/0612400

 Article overview



The 2dF-SDSS LRG and QSO Survey: The 2-Point Correlation Function and Redshift-Space Distortions
Nicholas P. Ross ; J. da Angela ; T. Shanks ; David A. Wake ; Russell D. Cannon ; A.C. Edge ; R.C. Nichol ; P.J. Outram ; Matthew Colless ; Warrick J. Couch ; Scott M. Croom ; Roberto De Propris ; Michael J. Drinkwater ; Daniel J. Eisenstein ; Jon Loveday ; Kevin A. Pimbblet ; Isaac G. Roseboom ; Donald P. Schneider ; Robert G. Sharp ; Michael A. Strauss ; P.M. Weilbacher ;
Date 14 Dec 2006
AbstractWe present a clustering analysis of Luminous Red Galaxies (LRGs) using nearly 9 000 objects from the final catalogue of the 2dF-SDSS LRG And QSO (2SLAQ) Survey. We measure the redshift-space two-point correlation function, xi(s), at the mean LRG redshift of z=0.55. A single power-law fits the deprojected correlation function, xi(r), with a correlation length of r_0=7.45+-0.35 Mpc and a power-law slope of gamma=1.72+-0.06 in the 0.4<r<70 Mpc range. But it is in the LRG angular correlation function that the strongest evidence for non-power-law features is found where a slope of gamma=-2.17+-0.07 is seen at 1<r<10 Mpc with a flatter gamma=-1.67+-0.03 slope apparent at r<~1 Mpc scales. We use the simple power-law fit to the galaxy xi(r) to model the redshift space distortions in the 2-D redshift-space correlation function, xi(sigma,pi). We fit for the LRG velocity dispersion, w_z, Omega_m and beta, where beta=Omega_m^0.6/b and b is the linear bias parameter. We find values of w_z=330kms^-1, Omega_m= 0.10+0.35-0.10 and beta=0.40+-0.05. These high redshift results, which incorporate the Alcock-Paczynski effect and the effects of dynamical infall, start to break the degeneracy between Omega_m and beta found in low-redshift galaxy surveys. This degeneracy is further broken by introducing an additional external constraint, the value of beta(z=0.1)=0.45 from 2dFGRS, and then considering the evolution of clustering from z~0 to z_LRG~0.55. With these combined methods we find Omega_m(z=0)=0.30+-0.15 and beta(z=0.55)=0.45+-0.05. Assuming these values, we find a value for b(z=0.55)=1.66+-0.35. We show that this is consistent with a simple ``high peaks’’ bias prescription which assumes that LRGs have a constant co-moving density and their clustering evolves purely under gravity. [ABRIDGED]
Source arXiv, astro-ph/0612400
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica