Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

28 April 2024
 
  » 1880762

 Article forum



Taking Care of Business in a Flash: Constraining the Timescale for Low-Mass Satellite Quenching with ELVIS
Sean P. Fillingham ; Michael C. Cooper ; Coral Wheeler ; Shea Garrison-Kimmel ; Michael Boylan-Kolchin ; James S. Bullock ;
Date 23 Mar 2015
AbstractThe vast majority of dwarf satellites orbiting the Milky Way and M31 are quenched, while comparable galaxies in the field are gas-rich and star-forming. Assuming that this dichotomy is driven by environmental quenching, we use the ELVIS suite of N-body simulations to constrain the characteristic timescale upon which satellites must quench following infall into the virial volumes of their hosts. The high satellite quenched fraction observed in the Local Group demands an extremely short quenching timescale (~ 2 Gyr) for dwarf satellites in the mass range Mstar ~ 10^6-10^8 Msun. This quenching timescale is significantly shorter than that required to explain the quenched fraction of more massive satellites (~ 8 Gyr), both in the Local Group and in more massive host halos, suggesting a dramatic change in the dominant satellite quenching mechanism at Mstar < 10^8 Msun. Combining our work with the results of complementary analyses in the literature, we conclude that the suppression of star formation in massive satellites (Mstar ~ 10^8 - 10^11 Msun) is broadly consistent with being driven by starvation, such that the satellite quenching timescale corresponds to the cold gas depletion time. Below a critical stellar mass scale of ~ 10^8 Msun, however, the required quenching times are much shorter than the expected cold gas depletion times. Instead, quenching must act on a timescale comparable to the dynamical time of the host halo. We show that ram-pressure stripping can naturally explain this behavior, with the critical mass (of Mstar ~ 10^8 Msun) corresponding to halos with gravitational restoring forces that are too weak to overcome the drag force encountered when moving through an extended, hot circumgalactic medium.
Source arXiv, 1503.6803
Services Forum | Review | PDF | Favorites   
 

No message found in this article forum.  You have a question or message about this article? Ask the community and write a message in the forum.
If you want to rate this article, please use the review section..

Subject of your forum message:
Write your forum message below (min 50, max 2000 characters)

2000 characters left.
Please, read carefully your message since you cannot modify it after submitting.

  To add a message in the forum, you need to login or register first. (free): registration page






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica