Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » 1932235

 Article forum



Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A
A. Gusdorf ; R. Guesten ; K. M. Menten ; D. R. Flower ; G. Pineau des Forets ; C. Codella ; T. Csengeri ; A. I. Gomez-Ruiz ; S. Heyminck ; K. Jacobs ; L. E. Kristensen ; S. Leurini ; M. A. Requena-Torres ; S. F. Wampfler ; H. Wiesemeyer ; F. Wyrowski ;
Date 28 Sep 2015
AbstractOH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions. OH participates in the re-distribution of energy from the protostar towards the surrounding ISM. Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. We present spectrally resolved observations of OH towards the outflows of Cepheus A with the GREAT spectrometer onboard the SOFIA telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4, 163.1, and 119.2 microns), at angular resolutions of 16.3", 16.3", and 11.9", respectively. We present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to shock models. The two triplets near 163 microns are detected in emission with blending hyperfine structure unresolved. Their profiles and that of CO can be fitted by a combination of 2 or 3 Gaussians. The observed 119.2 microns triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Our comparisons suggest that the observations might be consistently fitted by a J-type model with nH > 1e5 cm-3, v > 20 km/s, and with a filling factor of ~1. Such a high density is generally found in shocks associated to high-mass protostars.
Source arXiv, 1509.8367
Services Forum | Review | PDF | Favorites   
 

No message found in this article forum.  You have a question or message about this article? Ask the community and write a message in the forum.
If you want to rate this article, please use the review section..

Subject of your forum message:
Write your forum message below (min 50, max 2000 characters)

2000 characters left.
Please, read carefully your message since you cannot modify it after submitting.

  To add a message in the forum, you need to login or register first. (free): registration page






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica