Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3666
Articles: 2'599'751
Articles rated: 2609

05 February 2025
 
  » arxiv » 2301.01016

 Article overview



Mechanical scanning probe lithography of perovskites for fabrication of high-Q planar polaritonic cavities
N. Glebov ; M. Masharin ; B. Borodin ; P. Alekseev ; F. Benimetskiy ; S. Makarov ; A. Samusev ;
Date 3 Jan 2023
AbstractExciton-polaritons are unique quasiparticles with hybrid properties of an exciton and a photon, opening ways to realize ultrafast strongly nonlinear systems and inversion-free lasers based on Bose-Einstein polariton condensation. However, the real-world applications of the polariton systems are still limited due to the temperature operation and costly fabrication techniques for both exciton materials and photon cavities. 2D perovskites represent one of the most prospective platforms for the realization of strong light-matter coupling since they possess room-temperature exciton states with large oscillator strength and can simultaneously provide planar photon cavities with high field localization due to the huge refractive index of the material. In this work, we demonstrate for the first time the mechanical scanning probe lithography method for the realization of low-cost room-temperature exciton-polariton systems based on the 2D perovskite (PEA)$_2$PbI$_4$ with exciton binding energy exceeding 200 meV. Precisely controlling the lithography parameters, we broadly adjust the exciton-polariton dispersion and radiative losses of polaritonic modes in the range of 0.1 to 0.2 of total optical losses. Our findings represent a versatile approach to the fabrication of planar high-quality perovskite-based photonic cavities supporting the strong light-matter coupling regime for the development of on-chip all-optical active and nonlinear polaritonic devices.
Source arXiv, 2301.01016
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica