Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

26 April 2024
 
  » arxiv » cond-mat/0606224

 Article overview



Understanding the Frequency Distribution of Mechanically Stable Disk Packings
Guo-Jie Gao ; Jerzy Blawzdziewicz ; Corey S. O’Hern ;
Date 9 Jun 2006
Subject Statistical Mechanics; Soft Condensed Matter
AbstractRelative frequencies of mechanically stable (MS) packings of frictionless bidisperse disks are studied numerically in small systems. The packings are created by successively compressing or decompressing a system of soft purely repulsive disks, followed by energy minimization, until only infinitesimal particle overlaps remain. For systems of up to 14 particles most of the MS packings were generated. We find that the packings are not equally probable as has been assumed in recent thermodynamic descriptions of granular systems. Instead, the frequency distribution, averaged over each packing-fraction interval $Delta phi$, grows exponentially with increasing $phi$. Moreover, within each packing-fraction interval MS packings occur with frequencies $f_k$ that differ by many orders of magnitude. Also, key features of the frequency distribution do not change when we significantly alter the packing-generation algorithm--for example frequent packings remain frequent and rare ones remain rare. These results indicate that the frequency distribution of MS packings is strongly influenced by geometrical properties of the multidimensional configuration space. By adding thermal fluctuations to a set of the MS packings, we were able to examine a number of local features of configuration space near each packing including the time required for a given packing to break to a distinct one, which enabled us to estimate the energy barriers that separate one packing from another. We found a positive correlation between the packing frequencies and the heights of the lowest energy barriers $epsilon_0$. We also examined displacement fluctuations away from the MS packings to correlate the size and shape of the local basins near each packing to the packing frequencies.
Source arXiv, cond-mat/0606224
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica