Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'506'133
Articles rated: 2609

27 April 2024
 
  » arxiv » cond-mat/0606272

 Article overview



Quantized conductance in an AlAs 2D electron system quantum point contact
O. Gunawan ; B. Habib ; E. P. De Poortere ; M. Shayegan ;
Date 12 Jun 2006
AbstractWe report experimental results on a quantum point contact (QPC) device formed in a wide AlAs quantum well where the two-dimensional electrons occupy two in-plane valleys with elliptical Fermi contours. To probe the closely-spaced, one-dimensional electric subbands, we fabricated a point contact device defined by shallow-etching and a top gate that covers the entire device. The conductance versus top gate bias trace shows a series of weak plateaus at integer multiples of $2e^2/h$, indicating a broken valley degeneracy in the QPC and implying the potential use of QPC as a simple "valley filter" device. A model is presented to describe the quantized energy levels and the role of the in-plane valleys in the transport. We also observe a well-developed conductance plateau near $0.7x2e^2/h$ which may reflect the strong electron-electron interaction in the system.
Source arXiv, cond-mat/0606272
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica