| | |
| | |
Stat |
Members: 3664 Articles: 2'599'751 Articles rated: 2609
26 December 2024 |
|
| | | |
|
Article overview
| |
|
Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials | H. C. Jiang
; Z. Y. Weng
; T. Xiang
; | Date: |
13 Jan 2007 | Subject: | Strongly Correlated Electrons; Mesoscopic Systems and Quantum Hall
Effect | Abstract: | We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two separated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the "superfluid" and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells. | Source: | arXiv, cond-mat/0701290 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|