Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3664
Articles: 2'599'751
Articles rated: 2609

27 December 2024
 
  » arxiv » hep-lat/9210039

 Article overview



Perturbative Corrections for Staggered Fermion Bilinears
Apoorva Patel ; Stephen Sharpe ;
Date 30 Oct 1992
Journal Nucl.Phys. B395 (1993) 701-732
Subject hep-lat
AbstractWe calculate the perturbative corrections to fermion bilinears that are used in numerical simulations when extracting weak matrix elements using staggered fermions. This extends previous calculations of Golterman and Smit, and Daniel and Sheard. In particular, we calculate the corrections for non-local bilinears defined in Landau gauge with gauge links excluded. We do this for the simplest operators, i.e. those defined on a $2^4$ hypercube, and for tree level improved operators which live on $4^4$ hypercubes. We also consider gauge invariant operators in which the ``tadpole’’ contributions are suppressed by projecting the sums of products of gauge links back in to the gauge group. In all cases, we find that the variation in the size of the perturbative corrections is smaller than those with the gauge invariant unimproved operators. This is most strikingly true for the smeared operators. We investigate the efficacy of the mean-field method of Lepage and Mackenzie at summing up tadpole contributions. In a companion paper we apply these results to four-fermion operators.
Source arXiv, hep-lat/9210039
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica